

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Mechanics M2 (WME02) Paper 01

1a	Equation of motion	M1	Dimensionally correct. Condone sign error.
	F - R = 1500a	A1	Correct unsimplified equation in <i>F</i> or <i>P</i>
	Use of $P = Fv : \left(\frac{30000}{20} - R = 1500 \times 0.6\right)$	M1	Must be trying to use 30 kW but condone error in zeros
	R = 600	A1	Correct answer only
		4	
1b	Equation of motion	M1	Dimensionally correct. Need all relevant terms. Condone sign errors and sin/cos confusion. Allow with <i>F</i> .
	$\frac{30000}{V} - 1500g \times \frac{1}{8} - 500 = -1500 \times 0.2$	A1 A1	Unsimplified equation with <i>F</i> substituted and at most one error Correct unsimplified equation with <i>F</i> substituted.
		711	If F is never substituted, A0A0
	V = 14.7 (15)	A1	3 sf or 2 sf
		4	
		(8)	
2	1 st equation e.g. Equation for change in KE	M1	Dimensionally correct. Must be subtracting but condone sign error.
	$\frac{1}{2} \times 0.5 \left(x^2 + y^2 - \left(5^2 + 3^2 \right) \right) = 22$ $\left(x^2 + y^2 = 122 \right) \left(1^2 + \left(2\lambda + 3 \right)^2 = 122 \right)$	A1	Correct unsimplified equation seen or implied (They might have used impulsementum first and done some work before substituting <i>x</i> and <i>y</i> .)
	2 nd equation e.g. Impulse-momentum equation	M1	Dimensionally correct. Must be subtracting but condone sign error.
	$0.5(x\mathbf{i} + y\mathbf{j}) - 0.5(5\mathbf{i} + 3\mathbf{j}) = (-2\mathbf{i} + \lambda\mathbf{j})$ $((x-5)\mathbf{i} + (y-3)\mathbf{j} = -4\mathbf{i} + 2\lambda\mathbf{j})$	A1	Correct unsimplified equation
	NB: epen has M1A1A1 for the final 3 mark	ks but th	is should be marked DM1DM1A1
	Form a quadratic equation in λ	DM1	e.g. $1^2 + (3+2\lambda)^2 = 122$ Dependent on the 2 preceding M marks
	Solve for 2 values of λ	DM1	e.g. solve $4\lambda^2 + 12\lambda - 112 = 0$ or $(3+2\lambda)^2 = 121$ Dependent on the preceding M1
	$\Rightarrow \lambda = 4$ or $\lambda = -7$	A1	Correct only and no errors seen (watch out for $x = -1$ used)
alt	Form a quadratic in y	DM1	e.g. $1+y^2 = 122$ ($y^2 = 121$) Dependent on the 2 preceding M marks
	Solve for 2 values of y and use these to obtain 2 values of λ	DM1	Dependent on the preceding M1
	$\Rightarrow \lambda = 4$ or $\lambda = -7$	A1	
		7	

3a	rectangle triangle	area $48a^2$ $18a^2$	distance from AE $4a$ $8a-2a(=6a)$	B1 B1	Mass ratio correct Distances from AE (or parallel axis) correct
	lamina	$30a^2$			
	M(AE)			M1	Allow use of a parallel axis. The moments equation should include a but condone if the mass ratio does not include a factor of a^2 . Dimensionally correct.
	$48a^2 \times 4a - 18a^2 \times 6a = 30a^2 \overline{x}$		A1	Correct unsimplified equation for their axis. Accept as part of a vector equation.	
	$\bar{x} = \frac{84}{30}a = \frac{14}{5}a$ *		A1*	Obtain given answer from correct working (including correct use of <i>a</i>)	
					If they take moments about BD they get $d = 5.2a$ Allow B1B1M1A1A0 if they get this far.
				5	
3b	Find trig ratio	o of a relev	ant angle	M1	Correct use of trig.
	$\tan \theta^{\circ} = \frac{3a}{2.8a}$			A1	Correct equation for the required angle. (DO NOT ISW: If they obtain 47 and then use $90 - 47 = 43$ they score M1A0A0)
	$\theta = 47$	7		A1	The Q asks for a whole number of degrees. 0.82 radians scores M1A1A0
				(8)	

Use $t = 2$ and $3t^2 + 2t = t^3 + kt$ (12+4=8+2k)	M1	Allow verification.
k = 4 *	A1*	Obtain given answer from correct working. Verification requires a clear conclusion.
	2	
Use of $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Differentiate the vector v Majority of powers going down
$\mathbf{a} = (6t+2)\mathbf{i} + (3t^2+4)\mathbf{j}$	A1	Correct only
Use $ \mathbf{F} = m \mathbf{a} $	DM1	Correct use of Pythagoras and N2L Dependent on the preceding M1
$ \mathbf{F} = 1.5 \times \sqrt{14^2 + 16^2} = 3\sqrt{113}$	A1	Or $\frac{3}{2}\sqrt{452}$ or 32 or better (31.89)
	4	
Use of $\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	M1	Majority of powers going up
$\mathbf{r} = \left(t^3 + t^2(+A)\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2(+B)\right)\mathbf{j}$	A1	Allow without constant of integration
Correct use of $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j}$ when $t = 0$ to find \mathbf{r} when $t = 2$	DM1	$\left(\mathbf{r} = \left(t^3 + t^2 + 3\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2 + 4\right)\mathbf{j}\right)$ Dependent on the preceding M1 Use of $\mathbf{r} = -3\mathbf{i} - 4\mathbf{j}$ is M0
$\mathbf{r} = 15\mathbf{i} + 16\mathbf{j}$	A1	Correct answer only. Accept column vector
	4	
	$(12+4=8+2k)$ $k = 4 *$ Use of $\mathbf{a} = \frac{d\mathbf{v}}{dt}$ $\mathbf{a} = (6t+2)\mathbf{i} + (3t^2+4)\mathbf{j}$ Use $ \mathbf{F} = m \mathbf{a} $ $ \mathbf{F} = 1.5 \times \sqrt{14^2 + 16^2} = 3\sqrt{113}$ Use of $\mathbf{r} = \int \mathbf{v} dt$ $\mathbf{r} = (t^3 + t^2(+A))\mathbf{i} + (\frac{1}{4}t^4 + \frac{4}{2}t^2(+B))\mathbf{j}$ Correct use of $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j}$ when $t = 0$ to find \mathbf{r} when $t = 2$	$(12+4=8+2k)$ $k = 4 *$ $A1*$ 2 Use of $\mathbf{a} = \frac{d\mathbf{v}}{dt}$ $\mathbf{a} = (6t+2)\mathbf{i} + (3t^2+4)\mathbf{j}$ $\mathbf{A}1$ Use $ \mathbf{F} = m \mathbf{a} $ $ \mathbf{F} = 1.5 \times \sqrt{14^2 + 16^2} = 3\sqrt{113}$ $\mathbf{A}1$ \mathbf{u} $\mathbf{r} = (t^3 + t^2(+A))\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2(+B)\right)\mathbf{j}$ $\mathbf{A}1$ Correct use of $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j}$ when $t = 0$ to find \mathbf{r} when $t = 2$ $\mathbf{D}\mathbf{M}1$ $\mathbf{r} = 15\mathbf{i} + 16\mathbf{j}$ $\mathbf{A}1$

5a	Use of $F_{\text{max}} = \mu R$: $F_{\text{max}} = \frac{2}{7} \times 1.5 g \cos \theta$		(3.87) Condone trig confusion.
	T max 7		Trig substitution not required.
		M1	Allow M1 if there is a clear statement for
			F_{max} "correct" and then used in a
			calculation including the gain in GPE
	Use of WD = $2.5 F_{\text{max}}$	M1	Trig substitution not required.
	max		M0 if they have included the gain in GPE
			If the method for <i>F</i> is incorrect but
			involves the use of μ to obtain F and then
			they use the "work done" formula correctly
			allow M0M1
	WD = 9.69 (9.7)(J)	A1	3 sf or 2 sf not $\frac{126}{13}$
			$\frac{3 \text{ SI OF 2 SI IIOU}}{13}$
		3	
5b	Work-energy equation	M1	The Q asks for work-energy. Need all
			terms and dimensionally correct. Condone
			sign errors and sin / cos confusion
	If their answer to (a) included the GPE then it	must be	e used for the total work done here to score
	the M1	ı	
	$\frac{1}{2} \times 1.5U^2 = WD + 1.5 \times 9.8 \times 2.5 \times \sin \theta$	A1ft	Unsimplified equation with at most one
	2		error.
		A1ft	Correct unsimplified equation Follow
		A 1	their WD against friction
	U = 5.64 (5.6)	A1	3 sf or 2 sf
		4	
5c	Work-energy equation for <i>A</i> to <i>A</i>	M1	The Q asks for work-energy. Need all
		1411	terms and dimensionally correct.
	$\frac{1}{2} \times 1.5v^2 - \frac{1}{2} \times 1.5U^2 - 2WD$	A1ft	Correct unsimplified equation. Follow
	$\frac{1}{2} \times 1.5v^2 = \frac{1}{2} \times 1.5U^2 - 2WD$	AIII	their WD against friction and their U
	$v = 2.43 (2.4) (m s^{-1})$	A1	3 sf or 2 sf
	,	3	
5c	Work-energy equation for <i>B</i> to <i>A</i>	M1	The Q asks for work-energy. Need all
alt			terms and dimensionally correct.
	1 15 2 15 00 25 10 10	A1ft	Correct unsimplified equation. Follow
	$\frac{1}{2} \times 1.5v^2 = 1.5 \times 9.8 \times 2.5 \times \sin \theta - WD$		their WD
	$v = 2.43 (2.4) (m s^{-1})$	A1	3 sf or 2 sf
		3	
		(10)	
	I .	\ /	I .

6a	• 0		
	1 m C		
	3 m T WN		
	H A OU WN		
	50 N		
	4 m		
	n /		
	M(A)	M1	Or equivalent method to form an
			equation in W only. Equation(s) must be
			dimensionally correct and contain all
			relevant terms. Condone sin / cos
		A 1	confusion and sign error(s)
	$50 \times 3\cos 30^{\circ} + W \times 6\cos 30^{\circ} = 60\sqrt{3} \times 4\sin 30^{\circ}$	A1	Unsimplified equation with at most one
		Λ1	error. Correct unsimplified equation
	W = 15 *	A1 A1*	Correct unsimplified equation Correct answer only
	W = 13 **	4	Correct answer only
6b	First equation e.g. Resolve vertically	M1	Or resolve parallel to pole
00	•	A1	Γ
	$(\pm)V + 50 + 15 = T\cos 30^{\circ} \ (V = 25)$	MI	Or: $P + 50\cos 60^{\circ} + 15\cos 60^{\circ} = 60\sqrt{3} \times \frac{\sqrt{3}}{2}$
	Second equation e.g. Resolve horizontally	M1	Or resolve perpendicular to the pole
	$(\pm)H = T\cos 60^{\circ} (= 30\sqrt{3} = 51.96)$	A 1	Or:
	(=)22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		$50\cos 30^{\circ} + 15\cos 30^{\circ} = 60\sqrt{3}\cos 60^{\circ} + Q$
	NB: One of the equations could be a second m	oments	equation
	$ R = \sqrt{25^2 + \left(30\sqrt{3}\right)^2}$	DM	Dependent on the 2 preceding M marks
	$ R = \sqrt{25^2 + (30\sqrt{3})}$	1	$(\sqrt{57.5^2 + 3 \times 6.25})$
)
	$=5\sqrt{133(57.662)} (N)$	A1	58 N or better
		6	Full marks available using
		O	$\pm V, \pm H, \pm P, \pm Q$
6b			R
alt			*/ */
	Form vector triangle for the vertical forces,	M 1	
	the thrust and the resultant		√ T
	Correct triangle	A1	50+15
			30°
	Use cosine rule	M1	ν
	$R^{2} = T^{2} + (50 + W)^{2} - 2T(50 + W)\cos 30^{\circ}$	A1	Correct unsimplified equation
	$R^{2} = (60\sqrt{3})^{2} + (65)^{2} - 2 \times 60\sqrt{3} \times 65\cos 30^{\circ}$	DM	Substitute values and solve for $ R $
		1 A1	58 N or better
	$ R = 5\sqrt{133} (57.662) (N)$		35 14 01 00001
		(10)	
		(10)	

7a	2 <i>u</i> —		
	$Q \atop km$		
	$\longrightarrow u \longrightarrow v$		
	Use CLM	M1	Need all terms and dimensionally correct. Condone sign errors. Might see them using equal (and opposite) impulses.
	$6mu - 3kmu = 3mu + kmv \left((3 - 3k)u = kv \right)$	A1	Correct unsimplified equation
	$\Rightarrow v = \frac{(3-3k)}{k}u *$	A1*	Obtain given answer from full and correct working
		3	
7b	Use of Impulse = change in momentum	M1	Must be subtracting. Can be for either particle.
	$ I_Q = I_P = 3mu - 3m \cdot 2u = 3mu$		Correct only
	or $ kmv - (-3mku) = \left km \cdot \frac{3 - 3k}{k}u + 3mku\right = 3mu$	A1	(Do not need to state that $ I_Q = I_P $ if find $ I_P $)
	k = k		
		2	
7c	Use impact law:	M1	Seen or implied. If stated in (a) must be used here. Must be used correctly but condone sign errors
	$\frac{v-u}{5u} = e \text{ or } \frac{3-3k}{k}u - u = 5ue$	A1	Correct unsimplified equation
	NB: the second and third M mark are not depen	dent on	the first M mark
	Use $v > u$ or $e > 0$ to form an inequality in k	M1	Could use $e0$ followed by $v \neq u$
	Use $e_{,,}$ 1 to form an inequality in k	M1	
	$\frac{3-3k}{k} > 1 \text{ and } 3-3k,, 6k \implies \frac{1}{3}, k < \frac{3}{4}$	A1	Correct answer only.
		5	
		(10)	

8a Condone use of θ or a mixture of θ and α throughout but final answer should be in on variable.			
	Equation for horizontal distance	M1	Complete method using <i>suvat</i> . Condone sine / cosine confusion
	$x = u \cos \alpha t$	A1	Correct only
	Equation for vertical distance	M1	Complete method using <i>suvat</i> . Condone sine / cosine confusion and sign error
	$y = u \sin \alpha t - \frac{1}{2} g t^2$	A1	Correct only
	$t = \frac{x}{u \cos \alpha} \Rightarrow$ $y = u \sin \alpha \cdot \frac{x}{u \cos \alpha} - \frac{g}{2} \left(\frac{x}{u \cos \alpha} \right)^{2}$ $\Rightarrow y = x \tan \alpha - \frac{gx^{2}}{2u^{2}} \left(1 + \tan^{2} \alpha \right) *$	DM1	Substitute for t to obtain y in terms of x and α Dependent on the 2 preceding M marks
	$\Rightarrow y = x \tan \alpha - \frac{gx^2}{2u^2} (1 + \tan^2 \alpha) *$	A1*	Obtain given answer from full and correct working. Need some evidence for the final step. $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$ is not sufficient.
		6	
8b	Conservation of energy:	M1	Method specified in the question. Need all terms and dimensionally correct. Condone sign errors
	$\frac{1}{2}m \times 25^2 = \frac{1}{2}mU^2 + mg \times 20$ $U = 15.3 (15)$	A1	Correct unsimplified equation
	U = 15.3 (15)	A1	3 sf or 2 sf only
		3	
8c	Use part (a) or work from first principles to form an equation in $\tan \theta$	M1	$\left(-20 = 30 \tan \theta - \frac{9.8 \times 900}{2U^2} \left(1 + \tan^2 \theta\right)\right)$
	Obtain $18.9 \tan^2 \theta - 30 \tan \theta - 1.07 = 0$ $\left(\frac{4410}{233} \tan^2 \theta - 30 \tan \theta - \frac{250}{233} = 0\right)$	A1ft	Or 3 term equivalent Follow their U Can be implied by a correct final answer
	$\Rightarrow \theta = 58.3^{\circ} \text{ or } 58^{\circ}$	A1	3 sf or 2 sf only
		3	
		(12)	